PhysicsAndMathsTutor.com

Please check the examination details below before entering your candidate information		
Candidate surname		Other names
MODEL SOLUTIONS		
Centre Number Candidate Number		
Pearson Edexcel Level 3 GCE		
Friday 7 June 2024		
Afternoon (Time: 1 hour 30 minutes)	Paper reference	9FM0/3C
Further Mathematics		
Advanced		
PAPER 3C: Further Mechanics 1		
You must have: Mathematical Formulae and Statistical	Tables (Gree	en), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided

 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Unless otherwise indicated, whenever a numerical value of g is required, take $g=9.8\,\mathrm{m\,s^{-3}}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P75322A ©2024 Pearson Education Ltd. $\textbf{1.} \hspace{1.5cm} \textit{[In this question, i and j are horizontal perpendicular unit vectors.]} \\$

A particle A has mass 3 kg and a particle B has mass 2 kg.

The particles are moving on a smooth horizontal plane when they collide directly.

Immediately **before** the collision, the velocity of A is $(3\mathbf{i} - \mathbf{j}) \mathbf{m} \mathbf{s}^{-1}$ and the velocity of B is $(-6\mathbf{i} + 2\mathbf{j}) \mathbf{m} \mathbf{s}^{-1}$

Immediately **after** the collision the velocity of *A* is $\left(-2\mathbf{i} + \frac{2}{3}\mathbf{j}\right)$ m s⁻¹

- (a) Find the total kinetic energy of the two particles before the collision.
- (b) Find, in terms of i and j, the impulse exerted on A by B in the collision.
- (c) Find, in terms of i and j, the velocity of B immediately after the collision.
- (3)

(3)

$$V_{A} = \sqrt{3^2 + (-1)^2} = \sqrt{10}$$

b) Recyll that impulse is
$$\Delta(MV)$$

$$= 3 \begin{pmatrix} -2 \\ 2/3 \end{pmatrix} - 3 \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} -15 \\ 5 \end{pmatrix}$$

DO NOT WRITE IN THIS AREA

c)
$$I = 2V_F - 2V_{\bar{I}}$$
 (1)

$$\exists \left(\begin{array}{c} 15 \\ -5 \end{array} \right) = 2 \left(\begin{array}{c} x \\ y \end{array} \right) - 2 \left(\begin{array}{c} -6 \\ 2 \end{array} \right)$$

$$\Rightarrow$$
 15=2x +12 \Rightarrow x=3/2

$$\underline{V}_{F} = \frac{3}{2} \cdot \underline{v} - \frac{1}{2} \cdot \underline{v} \quad \bigcirc$$

(Total for Question 1 is 9 marks)

A particle P of mass m is at rest at a point on the plane.

The particle is projected up the plane with speed $\sqrt{2ag}$

The particle moves up a line of greatest slope of the plane and comes to instantaneous rest after moving a distance d.

The coefficient of friction between P and the plane is $\frac{1}{7}$

(a) Show that the magnitude of the frictional force acting on P as it moves up the plane

is
$$\frac{4mg}{35}$$

Air resistance is assumed to be negligible.

Using the work-energy principle,

(b) find d in terms of a.

. (4)

(3)

Resolve perpendicular to the slope:

DO NOT WRITE IN THIS AREA

Question 2 continued Work done by friction + Ep = Ex h=dsino

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

PhysicsAndMathsTutor.com

- A car of mass 1000kg moves in a straight line along a horizontal road at a constant speed of 72 km h⁻¹
 - The resistance to the motion of the car is modelled as a constant force of magnitude 900 N

The engine of the car is working at a constant rate of PkW.

Using the model,

(a) find the value of P.

(3)

The car now travels in a straight line up a road which is inclined to the horizontal at an angle a, where $\sin a = \frac{2}{a}$.

 In a refined model, the resistance to the motion of the car from non-gravitational forces is now modelled as a force of magnitude 20v newtons, where vm s⁻¹ is the speed of the car

At the instant when the engine of the car is working at a constant rate of $\frac{30 \text{kW}}{\text{a}}$ and the car is moving up the road $\frac{\text{at } 10 \text{m s}^3}{\text{t}}$, the acceleration of the car is $a \text{m s}^3$

Using the refined model,

(b) find the value of a.

(4)

Later on, when the engine of the car is again working at a constant rate of 30kW, the car is moving up the road at a constant speed Ums 1

Using the refined model,

(c) find the value of U.

Recall that P=Fr

(5)

Question 3 continued

The coefficient of restitution between A and B is e, where e > 0

(a) Show that the speed of B immediately after the collision is 2u(1+e).

(6)

After the collision, B hits a smooth fixed vertical wall which is perpendicular to the direction of motion of B.

(b) Show that there will be a second collision between A and B.

(3)

The coefficient of restitution between B and the wall is $\frac{1}{2}$

Find, in simplified form, in terms of m, u and e,

- (c) the magnitude of the impulse received by *B* in its collision with the wall,
- (d) the loss in kinetic energy of B due to its collision with the wall.

gues left)

Question 4 continued

$$O(e L) \Rightarrow VA(0) \Rightarrow A continues 60 move towards the wall. ①$$

$$I = \Delta(MV) = M(VB - VB)$$

$$= \frac{1}{2} m \left(4v^{2} (1+e)^{2} - v^{2} (1+e)^{2} \right) 0$$

$$= \frac{3mv^{2} (1+e)^{2}}{2} 0$$

initial

DO NOT WRITE IN THIS AREA

The particle P hangs in equilibrium at the point E, where AE = 3a.

The particle P is then projected vertically downwards from E with speed $\frac{3}{2}\sqrt{a}$. Air resistance is assumed to be negligible. To third where $E\varphi$

Find the elastic energy stored in the string, when P first comes to instantaneous rest. Give your answer in the form kmga, where k is a constant to be found.

We have to consider three types of energy.

$$\frac{1}{2}MV^2 + Mgh + \frac{\lambda e^2}{2L} = \frac{1}{2}MV^2 + Mgh + \frac{\lambda e^2}{2L}$$

$$\frac{1}{2} m \left(\frac{3}{2} \sqrt{ug}\right)^2 + mgx + \frac{2mga^{20}}{2(2a)} = 0 + 0 + \frac{2mg(x+u)^2}{2(2a)}$$

$$=\frac{9}{8}$$
 mag + Mgx + $\frac{1}{2}$ Mga = $\frac{2 \text{ Mg x}^2 + \frac{1}{4} \text{ Mgax} + 2 \text{ Mga}^2}{4 \text{ Mga}}$

$$\Rightarrow \frac{q}{8}\alpha + x + \frac{1}{2}\alpha = \frac{x^2}{2\alpha} + x + \frac{\alpha}{2}$$

$$= \frac{9}{8} = \frac{2^2}{2^2}$$

$$\frac{3\alpha^2}{4} = x^2$$

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

$$2) x = \frac{3\alpha}{2} (\text{reject} - \frac{3\alpha}{2})$$

(Total for Question 5 is 7 marks)

[In this question, i and i are horizontal perpendicular unit vectors.]

A particle P is moving with velocity $(4i - j) \text{ m s}^{-1}$ on a smooth horizontal plane. The particle collides with a smooth vertical wall and rebounds with velocity (i + 3i) m s⁻¹

The coefficient of restitution between P and the wall is e.

(a) Find the value of e.

(6)

After the collision, P goes on to hit a second smooth vertical wall, which is parallel to i.

The coefficient of restitution between P and this second wall is

The angle through which the direction of motion of P has been deflected by its collision with this second wall is α° .

(b) Find the value of α , giving your answer to the nearest whole number.

(4)

impulse

$$\underline{\underline{L}} = M\left(\begin{pmatrix} 1\\3 \end{pmatrix} - \begin{pmatrix} 4\\-1 \end{pmatrix}\right)^{1/2} = M\left(\begin{pmatrix} -3\\4 \end{pmatrix}\right)$$

$$\sqrt{3^2+4^2} = 5 \Rightarrow \frac{1}{5} \left(-3i+4i\right)^{-1}$$
 is the wit impulse and speed

Separation:
$$\frac{1}{5} \begin{pmatrix} -3 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -3+12 \end{pmatrix} = \frac{9}{5}$$

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Figure 1

A smooth uniform sphere A of mass m is moving with speed U on a smooth horizontal plane. The sphere A collides obliquely with a smooth uniform sphere B of mass 3m which is at rest on the plane. The two spheres have the same radius.

Immediately before the collision, the direction of motion of A makes an angle α , where $0^{\circ} < \alpha < 90^{\circ}$, with the line joining the centres of the spheres.

Immediately after the collision, the direction of motion of A is **perpendicular** to its original direction, as shown in Figure 1.

The coefficient of restitution between the spheres is *e*.

(a) Show that the speed of B immediately after the collision is

$$\frac{1}{4}(1+e)U\cos\alpha$$

(b) Show that $e > \frac{1}{3}$

(4)

(6)

(c) Show that $0 < \tan \alpha \le \frac{1}{\sqrt{2}}$

(5)

a) Use the conservation o

momentum.

M (UCOS &) = M (- Usind) + M (UB)

=) Ucosa = -Vsina + VB ()

Use the impact law e= Uz-V

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Ouestion 7 continued